Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 304, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174901

RESUMO

Ebolavirus (EBOV) infection in humans causes severe hemorrhagic fevers with high mortality rates that range from 30 to 80% as shown in different outbreaks. Thus the development of safe and efficacious EBOV vaccines remains an important goal for biomedical research. We have shown in early studies that immunization with insect cell-produced EBOV virus-like particles (VLPs) is able to induce protect vaccinated mice against lethal EBOV challenge. In the present study, we investigated immune responses induced by Ebola VLPs via two different routes, intramuscular and intradermal immunizations, in guinea pigs. Analyses of antibody responses revealed that similar levels of total IgG antibodies against the EBOV glycoprotein (GP) were induced by the two different immunization methods. However, further characterization showed that the EBOV GP-specific antibodies induced by intramuscular immunization were mainly of the IgG2 subtype whereas both IgG1 and IgG2 antibodies against EBOV GP were induced by intradermal immunization. In contrast, antibody responses against the EBOV matrix protein VP40 induced by intramuscular or intradermal immunizations exhibited similar IgG1 and IgG2 profiles. More interestingly, we found that the sites that the IgG1 antibodies induced by intradermal immunizations bind to in GP are different from those that bind to the IgG2 antibodies induced by intramuscular immunization. Further analyses revealed that sera from all vaccinated guinea pigs exhibited neutralizing activity against Ebola GP-mediated HIV pseudovirion infection at high levels. Moreover, all EBOV VLP-vaccinated guinea pigs survived the challenge by a high dose (1000 pfu) of guinea pig-adapted EBOV, while all control guinea pigs immunized with irrelevant VLPs succumbed to the challenge. The induction of both IgG1 and IgG2 antibody responses that recognized broader sites in GP by intradermal immunization of EBOV VLPs indicates that this approach may represent a more advantageous route of vaccination against virus infection.

2.
J Infect Dis ; 212 Suppl 2: S398-403, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25877553

RESUMO

In addition to its surface glycoprotein (GP), Ebola virus directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. We recently reported that sGP actively diverts host antibody responses against the epitopes that it shares with GP and thereby allows itself to absorb anti-GP antibodies, a phenomenon we termed "antigenic subversion." To investigate the effect of antigenic subversion by sGP on protection against virus infection, we compared immune responses induced by different prime-boost immunization regimens with GP and sGP DNA vaccines in mice and their efficacy against lethal Ebola virus challenge. Similar levels of anti-GP antibodies were induced by 2 immunizations with sGP and GP DNA vaccines. However, 2 immunizations with GP but not sGP DNA vaccine fully protected mice from lethal challenge. Boosting with sGP or GP DNA vaccine in mice that had been primed by GP or sGP DNA vaccine augmented the levels of anti-GP antibody responses and further improved protective efficacy against Ebola virus infection. These results show that both the quality and the levels of anti-GP antibody responses affect the efficacy of protection against Ebola virus infection.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Isoformas de Proteínas/imunologia , Vacinas de DNA/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Feminino , Células HEK293 , Doença pelo Vírus Ebola/virologia , Humanos , Imunização Secundária/métodos , Camundongos , Camundongos Endogâmicos BALB C , Vacinação/métodos
3.
J Virol ; 89(13): 6773-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903348

RESUMO

UNLABELLED: This study addresses the role of Ebola virus (EBOV) specific infectivity in virulence. Filoviruses are highly lethal, enveloped, single-stranded negative-sense RNA viruses that can cause hemorrhagic fever. No approved vaccines or therapies exist for filovirus infections, and infectious virus must be handled in maximum containment. Efficacy testing of countermeasures, in addition to investigations of pathogenicity and immune response, often requires a well-characterized animal model. For EBOV, an obstacle in performing accurate disease modeling is a poor understanding of what constitutes an infectious dose in animal models. One well-recognized consequence of viral passage in cell culture is a change in specific infectivity, often measured as a particle-to-PFU ratio. Here, we report that serial passages of EBOV in cell culture resulted in a decrease in particle-to-PFU ratio. Notably, this correlated with decreased potency in a lethal cynomolgus macaque (Macaca fascicularis) model of infection; animals were infected with the same viral dose as determined by plaque assay, but animals that received more virus particles exhibited increased disease. This suggests that some particles are unable to form a plaque in a cell culture assay but are able to result in lethal disease in vivo. These results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures. IMPORTANCE: Ebola virus (EBOV) can cause severe hemorrhagic disease with a high case-fatality rate, and there are no approved vaccines or therapies. Specific infectivity can be considered the total number of viral particles per PFU, and its impact on disease is poorly understood. In stocks of most mammalian viruses, there are particles that are unable to complete an infectious cycle or unable to cause cell pathology in cultured cells. We asked if these particles cause disease in nonhuman primates by infecting monkeys with equal infectious doses of genetically identical stocks possessing either high or low specific infectivities. Interestingly, some particles that did not yield plaques in cell culture assays were able to result in lethal disease in vivo. Furthermore, the number of PFU needed to induce lethal disease in animals was very low. Our results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Animais , Modelos Animais de Doenças , Ebolavirus/crescimento & desenvolvimento , Ebolavirus/patogenicidade , Haplorrinos , Doença pelo Vírus Ebola/mortalidade , Macaca fascicularis , Inoculações Seriadas , Análise de Sobrevida , Carga Viral , Ensaio de Placa Viral , Virulência
4.
Antiviral Res ; 116: 76-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25666761

RESUMO

In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and potentially MERS, while vinyl sulfone-based inhibitors are excellent lead candidates for Ebola virus therapeutics.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Dipeptídeos/farmacologia , Filoviridae/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Compostos de Vinila/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Catepsinas/metabolismo , Linhagem Celular Tumoral , Coronavirus/fisiologia , Infecções por Coronavirus/tratamento farmacológico , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Ésteres , Filoviridae/fisiologia , Gabexato/análogos & derivados , Gabexato/farmacologia , Guanidinas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fenilalanina/análogos & derivados , Piperazinas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Compostos de Tosil
5.
J Virol ; 87(6): 3295-304, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23302881

RESUMO

Filoviruses are the cause of severe hemorrhagic fever in human and nonhuman primates. The envelope glycoprotein (GP), responsible for both receptor binding and fusion of the virus envelope with the host cell membrane, has been demonstrated to interact with multiple molecules in order to enhance entry into host cells. Here we have demonstrated that filoviruses utilize glycosaminoglycans, and more specifically heparan sulfate proteoglycans, for their attachment to host cells. This interaction is mediated by GP and does not require the presence of the mucin domain. Both the degree of sulfation and the structure of the carbohydrate backbone play a role in the interaction with filovirus GPs. This new step of filovirus interaction with host cells can potentially be a new target for antiviral strategies. As such, we were able to inhibit filovirus GP-mediated infection using carrageenan, a broad-spectrum microbicide that mimics heparin, and also using the antiviral dendrimeric peptide SB105-A10, which interacts with heparan sulfate, antagonizing the binding of the virus to cells.


Assuntos
Filoviridae/fisiologia , Proteoglicanas de Heparan Sulfato/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Animais , Linhagem Celular , Humanos
6.
J Virol ; 86(13): 7216-26, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532679

RESUMO

Lymphocytic choriomeningitis virus (LCMV), the prototype arenavirus, and Lassa virus (LASV), the causative agent of Lassa fever (LF), have extensive strain diversity and significant variations in pathogenicity for humans and experimental animals. The WE strain of LCMV (LCMV-WE), but not the Armstrong (Arm) strain, induces a fatal LF-like disease in rhesus macaques. We also demonstrated that LASV infection of human macrophages and endothelial cells resulted in reduced levels of proinflammatory cytokines. Here we have shown that cells infected with LASV or with LCMV-WE suppressed Toll-like receptor 2 (TLR2)-dependent proinflammatory cytokine responses. The persisting isolate LCMV clone 13 (CL13) also failed to stimulate interleukin-6 (IL-6) in macrophages. In contrast, nonpathogenic Mopeia virus, which is a genetic relative of LASV and LCMV-Arm induced robust responses that were TLR2/Mal dependent, required virus replication, and were enhanced by CD14. Superinfection experiments demonstrated that the WE strain of LCMV inhibited the Arm-mediated IL-8 response during the early stage of infection. In cells transfected with the NF-κB-luciferase reporter, infection with LCMV-Arm resulted in the induction of NF-κB, but cells infected with LCMV-WE and CL13 did not. These results suggest that pathogenic arenaviruses suppress NF-κB-mediated proinflammatory cytokine responses in infected cells.


Assuntos
Citocinas/antagonistas & inibidores , Evasão da Resposta Imune , Vírus Lassa/patogenicidade , Vírus da Coriomeningite Linfocítica/patogenicidade , Proteínas da Mielina/antagonistas & inibidores , Proteolipídeos/antagonistas & inibidores , Receptor 2 Toll-Like/antagonistas & inibidores , Animais , Linhagem Celular , Humanos , Vírus Lassa/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas de Membrana Transportadoras/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas da Mielina/imunologia , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , Proteolipídeos/imunologia , Receptor 2 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...